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高中 2022 级第二次诊断性考试

数学参考答案及评分标准

一、选择题：本题共 8小题，每小题 5分，共 40分．

1．D 2．A 3．C 4．B 5．D 6．B 7．A 8．C
二、选择题：本大题共 3小题，每小题 6分，共 18分．在每小题给出的四个选项中，有多项符合题目

要求．全部选对的得 6分，选对但不全的得部分分，有选错的得 0分．

9．BCD 10．BC 11．ABD
三、填空题：本题共 3个小题，每小题 5分，共 15分．

12．3； 13．
2
3
； 14．3 2 7

四、解答题：本题共 5小题，第 15题 13分，第 16、17小题 15分，第 18、19小题 17分，共 77分．解

答应写出文字说明、证明过程或演算步骤．

15．解：（1）∵ 2 cosa b c B  ，

由正弦定理得： sin sin 2sin cosA B C B  ，····························································2分

又
2

C 
 ，则 sin cosA B ，

∴ cos sin 2cosB B B  ，···················································································· 4分
∴ tan 1B  ，又 B是三角形内角，········································································· 5分

∴
4

B 
 ；········································································································ 6分

（2）∵ 2 cosa b c B  ，且 3 1b a ， ，

∴ cos 2c B  ，···································································································8分

∴
2 2 2

2
2

a c bc
ac

 
  ，·························································································9分

∴ 2 2 2 4a c b a   ，························································································· 11分

∴ 2 3c  ．···································································································· 13分

16．解：（1）a=0时， ( ) e 1xf x   ， (1) e 1f   ，且 ( ) exf x  ，····························· 2分

∴ (1) ek f   ，·································································································4分

故切线方程为：y−(e+1)=e(x−1)，即 ex−y+1=0；························································ 6分

（2）∵ ( ) exf x a   ， e [1 e]x  ， ，·········································································7分

由 1<a<e，存在 0 [0 1]x  ， ，使得 0( ) 0f x  ，即 0ex a ， 0 lnx a ，······························· 9分

当 0[0 )，x x 时， 0( ) 0f x  ， ( )f x 单调递减；························································ 10分

当 0( 1]，x x 时， 0( ) 0f x  ， ( )f x 单调递增，························································· 11分

故 0
min 0 0( ) ( ) 1 ln 1 3 2ln 2xf x f x e ax a a a         ，·············································· 12分

令 ( ) ln 1g a a a a   ， ( ) 1 (1 ln ) ln 0g a a a       ，················································13分

∴ ( )g a 在 (1 e)， 上单调递减，·············································································· 14分

易知 (2) 3 2ln 2g   ，所以 2a  ．········································································· 15分
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17．解：（1）设数列{ }na 的公差为 d，

令 1n  ，得
1 2

1 1
4a a

 ，所以 1 2 4a a  ，··································································· 2分

令 2n  ，得
1 2 2 3

1 1 2
7a a a a

  ，所以 2 3 28a a  ，·························································4分

∵数列{ }na 的公差大于 0，

∴ 1 1a  ， 3d  ，所以 3 2na n  ；·······································································6分

（2）（i）k=1时，n=1，则 1 1b  ；······································································· 7分

k=1时， 11 2 3 4k ka a      ，································································· 8分

∴ 1
2 2 2b   ， 1

3 2 2b   ；················································································· 9分

（ii）由题意可知： 11 2k k k ka a a a      ，························································10分

①当 kn a 时，
ka

b k ，则
na

b n ，∴ 3 2nb n  ；·················································· 11分

②当 1kn a  时， 1 2
k

k
ab   ，则 1 2

n

n
ab   ，∴ 3 1 2nnb   ；·······································12分

③当 2kn a  时， 2 2
k

k
ab   ，则 2 2

n

n
ab   ，∴ 3 2nnb  ，········································13分

∴ 3 1 2 3 3n nS b b b b    

1 4 3 2 2 5 3 1 3 6 3( ) ( ) ( )n n nb b b b b b b b b              

1 2 1 2(1 2 ) (2 2 2 ) (2 2 2 )n nn             

( 1) 2(1 2 ) 2
2 1 2

nn n  
  


2( 1) 2 4

2
nn n 

   ，··············································································· 14分

∴ 9 7
20 21 21

7 8 2 4 2 408
2

S S b 
       ．······························································· 15分
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18．解法一：（1）证明：如图 1，设 AC的中点为 F，连接 BF并延长交 CD于点 G，

易知△ABC为等边三角形，且 BG⊥AC，···································································· 1分
在△ACD中，AC=AD=2，满足 2 2 2AC AD CD  ，

∴AD⊥AC，则 G为 CD中点，················································································· 2分
又点 E为 PD中点，G为 CD中点，

∴EG//PC，又 PC⊥AC，
∴AC⊥EG，··········································································································3分
而 BG，EG均在平面 BEG内，且 BG∩EG=G，
∴AC⊥平面 BEG， BE BEG平面 ，

∴AC⊥BE；·········································································································· 5分
（2）因为 AC⊥平面 BEF，则 AC⊥EF，AC⊥FG，······················································ 6分
因此∠EFG即为二面角 E-AC-D的平面角，

∴
3cos
3

EFG  ，而 2AE  ，···············································································7分

∴在△EFG中， 2 2 3EF AE AF   ，由余弦定理得 2EG  ，······························· 8分
∴ 2 2 2EG FG EF  ，则 EG⊥FG，·········································································· 9分
∴EG⊥平面 ABCD，PC⊥平面 ABCD， 2EG  ， 2 2PC  ，

由 AD⊥AC，则△ACD的面积为 2，········································································· 10分

∴三棱锥 P-ACD的体积
1 4 2= 2 2 2=
3 3

V   ；··························································11分

（3）由 PC//EG，则直线 PC与平面 ACE所成角即为直线 EG与平面 ACE所成角，

由（1）可知 AC⊥平面 BEG， 平面AC ACE ，

∴平面 BEG⊥平面 ACE，因此∠FEG即为所求角，·····················································12分

思路一：在△EFG中， 3EF  ， 1FG  ，由正弦定理：
sin sin

EF FG
EGF FEG


 

，··········· 13分

∴
sinsin =

3
EGFFEG 

 ，·······················································································14分

当 sin =1EGF ，即如（2）中 EG⊥平面 ABCD时，····················································15分
sin 3sin = =

33
EGFFEG 

 ，··················································································· 16分

∴直线 PC与平面 ACE所成角的正弦值为
3
3

．··························································17分

思路二：在△EFG中， 3EF  ， 1FG  ，

故点 G在以 F为圆心，1为半径的圆上，·································································· 12分
当 EG与该圆相切时，即如（2）中 EG⊥平面 ABCD时，∠FEG最大，·························· 14分

此时
1 3sin = =

33
FEG ，·····················································································16分

∴直线 PC与平面 ACE所成角的正弦值为
3
3

．··························································17分
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解法二：（1）证明：易知△ABC为等边三角形在△ACD中，AC=AD=2，
满足 2 2 2AC AD CD  ，∴AD⊥AC，······································································· 1分
以 A为坐标原点，建立上如图所示的空间直角坐标系 A-xyz，

设点 P(x，y，z)，C(2，0，0)，D(0，2，0)，B(1， 3 ，0)，E(
2
x
，

2
2
y 

，
2
z
)，

易知 =(2 0 0)AC


， ， ， =(2 )PC x y z  


， ， ，
2=( 3 )

2 2 2
x y zBE 
 


1， ， ···························2分

由 PC⊥AC，则 2(2−x)=0，则 x=2，············································································3分

则
2=(0 3 )

2 2
y zBE 




， ， ·························································································4分

∴ =0AC BE
 

，则 AC⊥BE；···················································································· 5分
（2）由（1）可知 AC⊥平面 BEG， AC ABCD平面 ，

∴平面 BEG⊥平面 ABCD，······················································································ 6分
以 A为坐标原点，建立如图所示的空间直角坐标系 A-xyz，
设点 E(1，m，n)（m<2，n>0），易知 =(2 0 0)AC


， ， ， =(1 )， ，OE m n


，

设平面 ACE的法向量为：n1=(x，y，z)，

∴
0

0
x
x my nz


   
，不妨令 z m ，则平面 ACE的一个法向量为：n1=(0，−n，m)，

又平面 ACD的一个法向量为 n2=(0，0，1)，································································ 7分

∴cos<n1，n2>=
2

1

1

2
2 2

| | | 3
| || | 31
|n n
n n

m
m n


 

 
，·····························································8分

∵ 2 2| |= 1 4AE m n  


，则 2 2 3m n  ，

解得：n= 2 ，则点 E到平面 ACD的距离为 2 ，

由 E为 PD的中点，则点 P到平面 ACD的距离为 2 2，················································9分
在△ACD中，AC=AD=2，满足 2 2 2AC AD CD  ，
∴AD⊥AC，则△ACD的面积为 2，··········································································10分

∴三棱锥 P-ACD的体积
1 4 2= 2 2 2=
3 3

V   ；··························································11分

（3）由 PC//EG，则直线 PC与平面 ACE所成角即为直线 EG与平面 ACE所成角，设为θ，
由 =(1 1 0)，，G ，则 =(0 1 )， ，EG m n 


，································································· 12分

∴ 1
2 2 2 2

1

| | | (1 ) | | (1 ) | | |sin
| || | 3 4 23 (1 ) 3 (1 )

n =
n

EG n m mn n m mn n
EG mm n m n

       
  

      


 ····················· 13分

∴
2 2 2 2

2 3 1 3 1 ( 2) 4( 2) 1sin
3(4 2 ) 3(4 2 ) 6 2 6 2

n m m m m
m m m m

      
     

   
······························14分

1 1[(2 ) 4]
6 2

m
m

     


1 1 1[2 (2 ) 4]
6 2 3

m
m

     


≤ （当且仅当 m=1时，等号成立）······················ 16分

即 sin 的最大值为
3
3

，

∴直线 PC与平面 ACE所成角正弦值的最大值为
3
3

．················································17分
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19．解：（1）由已知得， 2 2 8 3a b  ，即 2 3ab  ，······················································1分

又离心率为
1
2

c
a
 ，则 2 24a c ，

∵ 2 2 2b c a  ，所以
2

23
4
a b ，即 3 2a b ，·····························································2分

∴ 2a  ， 3b  ，································································································ 3分

∴椭圆Г的标准方程为：
2 2

1
4 3
x y

  ；······································································· 4分

（2）设点 M(x0，y0)，则点 M满足：
2 2
0 0 1
4 3
x y

  ，则
2
0

2
0

3 3
4

y
x


  ，

由已知可得 F(0， 3 )，H(0， 3 )，设直线 MF与 MH的斜率分别为 1k ， 2k ，

∴ 0
1

0

3yk
x


 ， 0
2

0

3yk
x


 ，··············································································· 5分

直线 MF与 MH的斜率之积满足：
2

0 0 0
1 2 2

0 0 0

3 3 3 3
4

y y yk k
x x x
  

      ．····················· 6分

（i）∵D(2， 3 )，G(2，0)，则 | | 3DG  ， | | 2OG  ，

直线 PF的方程为： 1 3y k x  ，令 0y  ，则
1

3( 0)，P
k

，

∴
1

3| |
| |

OP
k

 ，····································································································· 7分

直线 HQ的方程为： 2 3y k x  ，令 2x  ，可得 Q(2， 22 3k  )，

∴ 2| | 2 | |DQ k ，

∴
1 1

3 3| | | | 3
| | | |

OP DG
k k

    ，················································································ 8分

且 2 2
1 1

3 3| | | | 2 2 | | 4 | | 4
4 | | | |

OG DQ k k
k k

       ，·························································9分

∴ | | | | | | | |OP DG OG DQ   ；·················································································· 10分

(ii) 存在
2 2 3( )
5 5
，K ，使得|TK|定值

4
5
，理由如下：··················································· 11分

设点 0 0( )S x y， ， 1 1( )I x y， ， 2 2( )J x y， ，

①当过椭圆上点 1 1( , )I x y 的直线 l斜率存在时，设直线 l方程为： y kx m  ，

带入椭圆Г的方程： 2 23 4 12 0x y   ，

化简并整理得： 2 2 2(4 3) 8 4 12 0k x kmx m     ，

∵直线 l与椭圆仅有一个公共点，

∴ 2 2 2(8 ) 4(4 3)(4 12) 0km k m      ，
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化简得： 2 24 3 0k m   ，···················································································· 12分

∴ 1 2
4 4

4 3
km kx

mk
 

 


，代入 y kx m  ，得 1
3y
m

 ，

∴ 1 1

1

3
4 4
mx xk

y
     ，

从而直线 l的方程为： 1

1 1

3 3
4
xy x
y y

   ，即 1 1 1
4 3
xx yy

  ，············································ 13分

②当过 1( 0)I x， 的直线 l斜率不存在且与椭圆Г仅有一个公共点时，直线 l的方程为： 1 2x x    ，

满足上式．

同理：当过椭圆上点 2 2( )J x y， 的直线： 2 2 1
4 3
xx yy

  与椭圆Г仅有一个公共点，

这两条直线都过点 S，所以有 1 0 1 0 1
4 3
x x y y

  ， 2 0 2 0 1
4 3
x x y y

  ，

∴直线 IJ的方程为 0 0 1
4 3
x x y y

  ．·········································································· 14分

由（i）则直线 PF的方程为： 1 3y k x  ，令 3y  ，则 R(
1

2 3
k

， 3 )，

又 Q(2， 22 3k  )，

∴RQ的中点 S(
1

3 1
k

 ， 23 k )，即 0
1

3 1x
k

  ， 0 2
1

33 3
4

y k
k

    ．

∴直线 IJ的方程表示为：
1 1

3 33( 1) 4( 3 ) 12 0
4

x y
k k

     ，

即
1

3 ( 3 ) 3 4 3 12 0x y x y
k

     ，······································································· 15分

令
3 0

3 4 3 12 0

x y

x y

  


  
，解得：

4
5
4 3
5

x

y

 

 

，······························································· 16分

∴直线 IJ恒过定点 N( 4 4 3
5 5
， )，又∵OT⊥IJ，

∴点 T在以 ON为直径的圆上，即 K( 2 2 3
5 5
， )，|TK|定值

4
5
．······································ 17分
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